



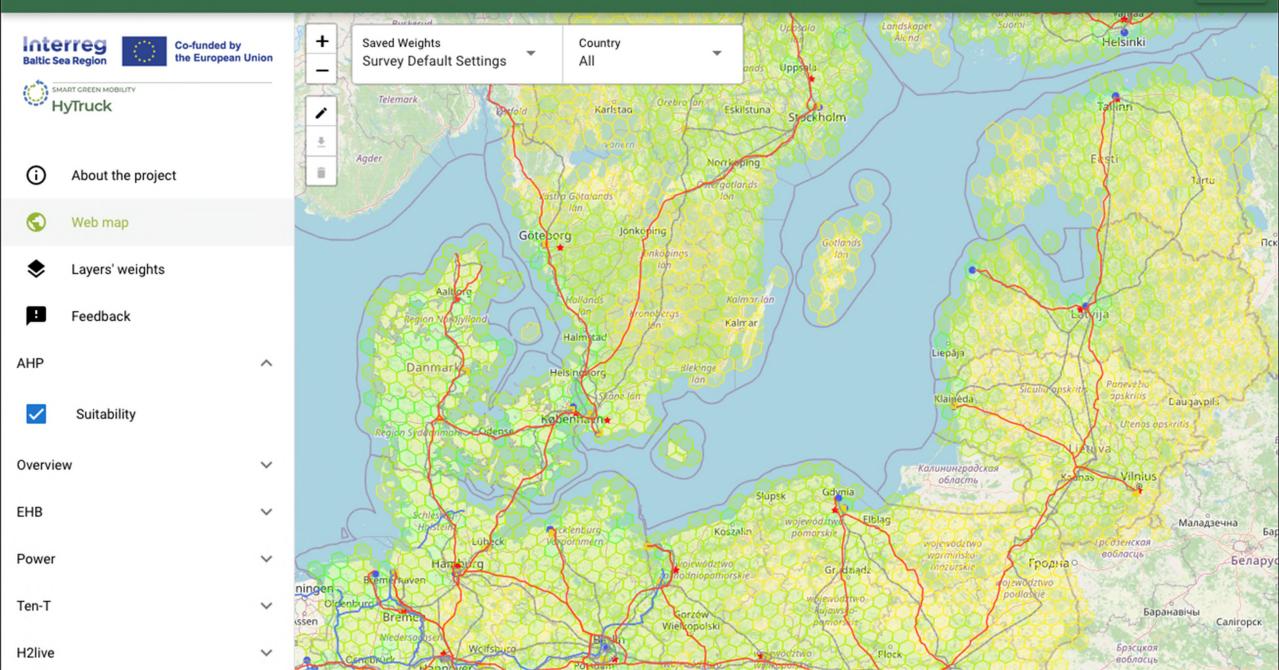


# **Breakfast briefing Spatial Planning Toolkit**

Date: 01.10.2025

**Speaker: Alexander Kmoch (PP5 University of Tartu)** 

interreg-baltic.eu/project/HyTruck



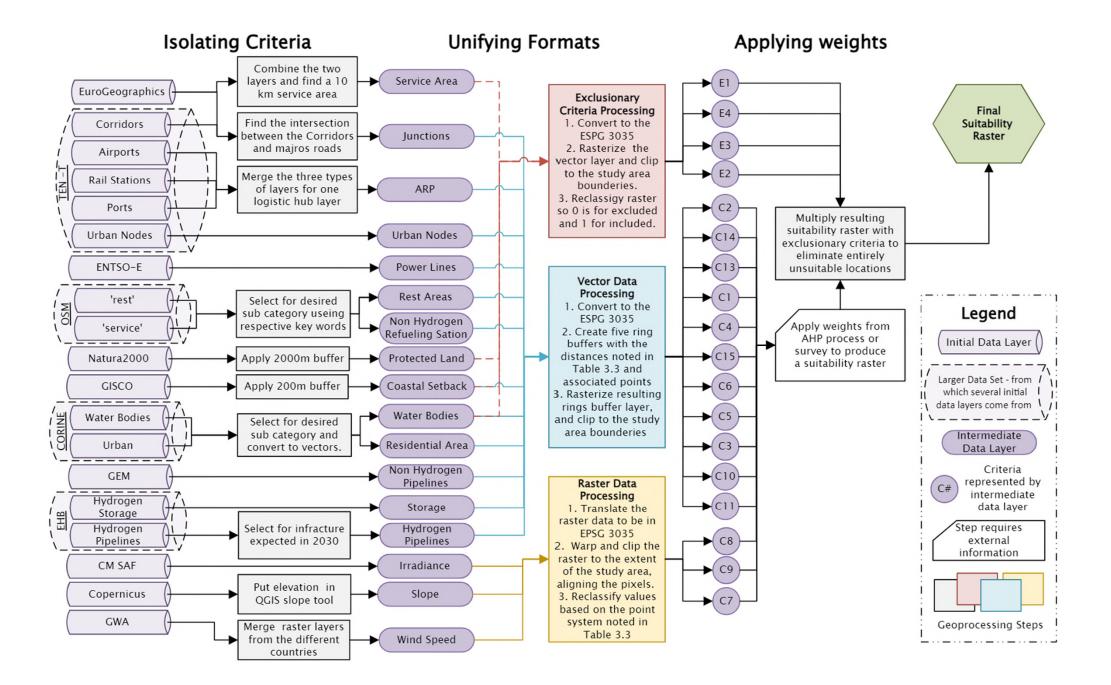

# **Spatial Planning Toolkit**

#### **Overview**

- Context: support the planning of HRS
- Work package main work period 2 years: 2023-2024 (2025 preparation for one-stop-shop)
- Iterative process:
  - tool capabilities vs stakeholder needs
  - Tool to help stakeholders find good / needed locations for HRS
  - Stakeholders input (relevant criteria)
  - started with research component, literature review (criteria, methods)
- Implementation to support HRS planning and iterative stakeholder feedback, and to visualise and present project outcomes

#### 




# Concepts 1 (3)

### Suitability analyis \*1)

- selected criteria are amalgamated into a global grid system IGEO7 \*2)
- evenly sized grid cells at ca 1km resolution
- classified based on literature review (and stakeholder inputs)
- assign basic suitability values ranging from 0 (not suitable) to 10 (very suitable) to each criterion within each grid cell
- base suitability score for each grid cell is then calculated as average

<sup>\*1)</sup> Bratic, A. (2024, August). Hydrogen truck refueling stations for heavy duty vehicles - A case study of the Baltic Sea Region (Master's thesis). Faculty of Geo-information Science and Earth Observation, University of Twente, Enschede, Netherlands. Supervisors: Dr. Alexander Kmoch, Ir. Mark Brussel.

<sup>\*2)</sup> Kmoch, A., Sahr, K., Chan, W. T., and Uuemaa, E. (2025). IGEO7: A new hierarchically indexed hexagonal equal-area discrete global grid system, AGILE GIScience Ser., 6, 32, https://doi.org/10.5194/agile-giss-6-32-2025

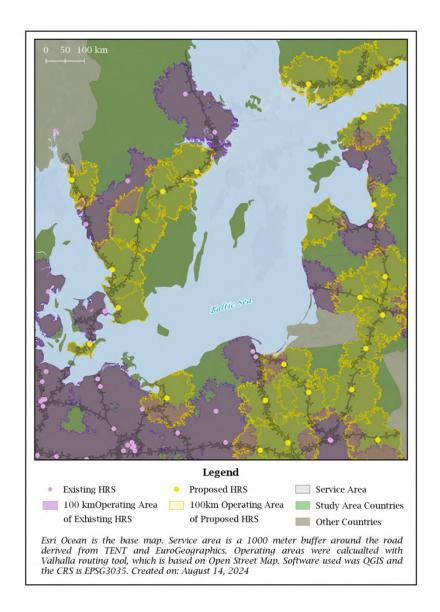


# Concepts 2 (3)

# Spatial suitability weighting (AHP and survey)

- The HRS construction suitability is informed by various spatial input criteria, and then weighted
- AHP-derived weights are informed by scientific literature, objectivity and consistency
- Survey weights were created from stakeholder interviews and their expert knowledge

# Concepts 2 (3)


| Layer name                  | Weight |
|-----------------------------|--------|
| Modelled fuel stations      | 0.059  |
| Modelled seashore           | 0.041  |
| Modelled solar wind         | 0.057  |
| Modelled urban nodes        | 0.093  |
| Modelled water bodies       | 0.048  |
| Modelled gas pipelines      | 0.050  |
| Modelled hydrogen pipelines | 0.080  |
| Modelled corridor points    | 0.085  |
| Modelled powerlines         | 0.076  |
| Modelled transport nodes    | 0.086  |
| Modelled residential areas  | 0.068  |
| Modelled rest areas         | 0.061  |
| Modelled slope              | 0.062  |

| cellid                     | 354653           |
|----------------------------|------------------|
| modelled_fuel_stations     | 4                |
| modelled_seashore          | 2                |
| modelled_solar_wind        | 2                |
| modelled_urban_nodes       | 2                |
| modelled_water_bodies      | 10               |
| modelled_gas_pipelines     | 4                |
| modelled_hydrogen_pipelin  | 4                |
| es                         |                  |
| modelled_corridor_points   | 0                |
| modelled_powerlines        | 6                |
| modelled_transport_nodes   | 4                |
| modelled_residential_areas | 6                |
| modelled_rest_areas        | 2                |
| modelled_slope             | 8                |
| suitability                | 3.97690529959836 |
|                            |                  |

# Concepts 3 (3)

### **Spatial Allocation of HRS Placement**

- Use planned/envisioned and existing HRS
- distribute potential minimal number stations (200 km) along Ten-T core roads
- Calculate service areas, i.e. reach from
- Prefer locations with higher suitability



### **Functionalities**

- Web map, zoom, pan, legend
- Limit view to a country / partner region
- Suitability grid, different weights for suitability visualisation
- Informative layers
- Feature info, activate/deactivate layers
- Service area function, export, delete
- Documentation link
- Login / account
- Create, edit, delete own suitability weights based
- Submit and review/edit submitted feedback

### Final outcomes

- Maintenance and documentation ("polishing")
- "Serverless" data query and API access
- Public deposit of data and code as open-source
- Transition into One-stop-shop for post-project extended availability

https://hytruck.landscape-geoinformatics.eu/

Research and technical documents references:

Bratic, A. (2024, August). Hydrogen truck refueling stations for heavy duty vehicles - A case study of the Baltic Sea Region (Master's thesis). Faculty of Geo-information Science and Earth Observation, University of Twente, Enschede, Netherlands. Supervisors: Dr. Alexander Kmoch, Ir. Mark Brussel.

Kmoch, A., Sahr, K., Chan, W. T., and Uuemaa, E. (2025). IGEO7: A new hierarchically indexed hexagonal equalarea discrete global grid system, AGILE GIScience Ser., 6, 32, https://doi.org/10.5194/agile-giss-6-32-2025





## Thank you!

<u>alexander.kmoch@ut.ee</u> | <u>https://landscape-geoinformatics.ut.ee</u>

https://hytruck.landscape-geoinformatics.eu/

