

SUSTAINABLE WATERS

OpenRisk II

AISyRisk Baltic & Ice module

Jon-Arve Røyset, Norwegian Coastal Administration Osiris Valdez Banda, Aalto University Jakub Montewka, Gdansk University of Technology

OpenRisk II Mid-Term Conference on Maritime Risk Management and Piloting in the Baltic Sea Region - 26-27.3.2025 Tallinn, Estonia

Risk model method

The risk model in AISyRisk considers a new methodology for the following accident types

- Powered grounding
- Drifting grounding
- Collision

Probability of foundering and fire/explosion is based on existing method

Powered grounding model – Type I: Critical turns

 Finds critical turns (where ships need to turn to avoid hitting land)

The outputs from the powered grounding type I candidate calculations are:

- Number of critical ship turns
- Location of the critical turns (latitude and longitude of the start point of the critical turn)
- Location of the hit point (latitude and longitude of the location for grounding)

Accidents = Number of critical turns ("accident candidates") × Causation Probability (P_c)

Powered grounding model – Type I: Critical turns

The following criteria apply for identifying critical turns:

- Difference in course over ground between adjacent points (30 seconds apart) higher than 5°
- 20-minute sector at start point of turns if the sectors cross land (incl. islands and shallow waters), after the point where the ship should turn

Powered grounding model – Type I: Critical turns

Illustration of 20 minute sectors that hit land created from the start points of turns (red)

Clustering of critical turns (red)

Clustering (gridded) of the critical turns showed on a heat map (high risk areas)

Outputs

The outputs from the powered grounding type I candidate calculations are:

- Number of critical ship turns.
- Location of the critical turns (latitude and longitude of the start point of the critical turn).
- Location of the hit point (latitude and longitude of the location for grounding).

Powered grounding model – Type II: Sailing close to land

- Grounding for ships sailing very close to shore or in shallow waters
- Establishing a "safety zone" around each vessel
 - Checks for when the safety zone overlaps with land or too shallow water \rightarrow critical situation
- To capture causes: Navigational error, unmarked reefs or rocks, misconceiving position etc.

Accidents = Number of safety zone overlaps ("accident candidates") × Causation Probability (P_c)

Collision – safety zone

Ship in safety zone

Safety zone dependence on speed

Collision

- The algorithm finds situations when one ship is inside another ship's safety domain
 - Not overlapping safety domains
- The safety zones domains are based on ship dimensions, speed and the encounter type

Collision – encounter types

Typical overtaking encounter

Typical crossing encounter

Collision – encounter types

Typical head-on encounter

Example of how the collision algorithm works – finding the midpoints

Points in a collision candidate

Collision midpoints to be aggregated

Collision results

10x10 km grid

Ice module development

Scale: Locke

AISyRISK

Collision (crossing) Collision (head on) Collison (overtaking) Drift grounding Power grounding (close to shore) Power grounding (critical turn) Fire/explosion Foundering

AISyRISK Ice module

Collision (crossing) Collision (head on) Collison (overtaking) Drift grounding Power grounding (close to shore) Power grounding (critical turn) Fire/explosion Foundering Collision under assistance Ice damage **Besetting in ice**

OpenRisk II Mid-Term Conference - 26-27.3.2025

What shall we calculate?

Accident Types in Ice
Collision - Over taking Collision - Crossing) Collision - Head on
Drift Grounding
Powered Grounding (close to shore)
Powered Grounding (missed turn)
Foundering due to ice
Fire / explosion
Besetting in ice
Ice damage
Collision under assistance
= Existing accident type
= New accident type

The frequency / probability of an accident occurring is dependant on the operation mode of the ship and the ice conditions the ship operates in.

I.e. the frequency needs to change if certain operations modes or conditions are detected.

Consequences

Expected Fuel Spill Volume

Expected Cargo Spill Volume

Expected Fatalities

Cost? No

Time lost? No

Operation modes (TRUE/FALSE)

- 1. Operating in ice
- 2. Independent operation in ice
- 3. Vessel following icebreaker
- 4. Vessel under tow
- 5. Vessel getting cut loose by icebreaker
- 6. Vessel sailing in convoy
- 7. Vessel sailing in an ice lead
- 8. Pressure ridges in ice regime
- 9. Glacier ice in ice regime

10. Vessel operating with positive Risk index

11. Vessel operating in remote areas

12. Operating in "light"/"harsh" ice conditions Something representing the risk if ice navigation better then POLARIS. Representing the speed of the vessel through ice might be an option?

Collision under assistance

OpenRisk II Mid-Term Conference - 26-27.3.2025

Operation mode recognition - example

• AIS data

February 2021

- Icebreaker SISU (example)
- Designed detection methods escort, convoy, cutting loose
- IBNet data

results comparison for escort and convoy

Example - Escort

□ Model recognition:

• Escort start time : 2021-02-16 00:21:00;

Escort end time : 2021-02-16 02:14:00

IBNet record: * slight time difference compared to the record, but the record is entered manually

DTE	Ibstatus Starttime	IBSTATUS_ENDTIME	Icebreaker	Name	IMO	Avg convoy size	Duration
2021-02-16	00:25:00	2:20:00	SISU	**	**	1	1h55min

Example - Convoy

□ Model recognition:

• Convoy start time : 2021-02-28 10:23:00; Convoy end time : 2021-02-28 11:39:00

□ IBNet record: Duration time of Vessel 1: 10:23:00 – 12:04:00; Duration time of Vessel 2: 10:23:00 – 11:39:00

DTE	Ibstatus Starttime	IBSTATUS_ENDTIME	Icebreaker	Name	ΙΜΟ	Avg convoy size	Duration
2021-02-28	10:15:00	11:40:00	SISU	**	**	2	1h25min
2021-02-28	11:40:00	12:05:00	SISU	**	**	1	25min

Example – Cutting loose

□ Model recognition:

• Assistance end time: 2021-02-12 19:07:00 → Starting escort

□ IBNet record: N/A

OpenRisk II Mid-Term Conference - 26-27.3.2025

Collision under assistance

Causation probability

$F = N_m x P_m$

m – Operation mode

N_m – Candidate in mode m

P_m – Causation probability in mode m

Operation	Average accidents per winter (4 winter periods ^a)	Assisted vessels (3 winter periods ^b)	Probability of accident per assisted vessel (3 winter periods ^b)
IB assistance operations	5.00	21384	6.1E-04
Convoy	0.75/winter		1.4E-04
Cutting loose	0.25/winter	-	0.5E-04
Towing	2/winter	-	3.7E-04
Unknown	2/winter	-	0.9E-04

^a Winter periods 2002-2003, 2009-2010, 2010-2011 and 2011-2012.

^b Winter periods 2009-2010, 2010-2011 and 2011-2012.

40.0%

30.0%

20.0%

10.0%

0.0%

40.0%

-30.0%

20.0%

10.0%

-0.0%

40.0%

30.0%

20.0%

-10.0%

0.0%

Establish causation probability distribution along ice condition

OpenRisk II Mid-Term Conference - 26-27.3.2025

Collision under assistance

