RUD REINER LEMOINE INSTITUT

Guideline on Buidling up Hydrogen Refueling Stations in the Baltic Sea Region

— HyTruck WP1 Output

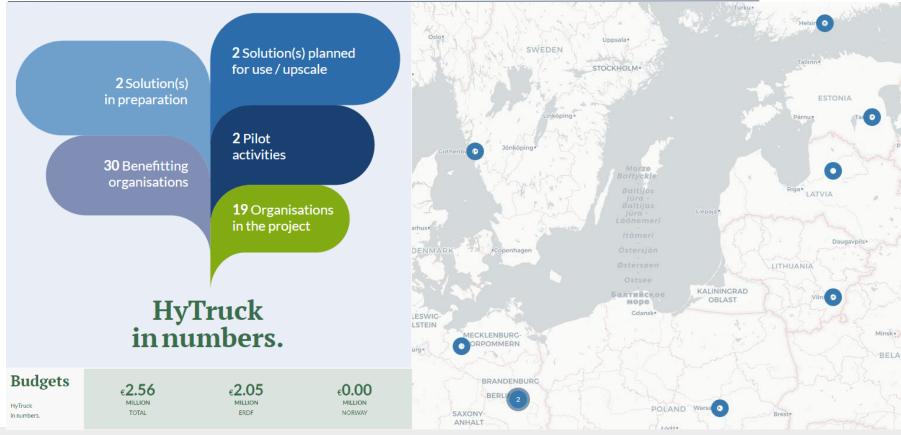
05.02.2025

Marcus Schober Scientific Researcher Reiner Lemoine Institut gGmbH

The Reiner Lemoine Institut

Reiner Lemoine Institut

- Non-profit research institute
- 100 % subsidiary of Reiner Lemoine-Foundation (RLS)
- Founded 2010 in Berlin
- Managing Directors: Dr. Kathrin Goldammer & Dr. Christine Kühnel
- \approx 100 researchers and students
- Three different research departments


Mobility with Renewable Energies

- Transportation system based on 100
 % renewable energies (RE, BEV, FCEV, H2, PtX,...)
- Traffic avoidance and modal shift
- Sustainable and socially just transport transition

We conduct applied research and offer consultancies to scientifically support the long-term transition of the energy supply system towards renewable energy.

The HyTruck Project

05.02.2025

Reiner Lemoine Institut

Key Questions

- AFIR requires member states to provide hydrogen refueling stations along the so called TEN-T core network by the end of 2030:
 - What Technology is best suited for long-distance heavy-duty transport?
 - Under which conditions and when hydrogen as a fuel becomes competitive?
 - How to make sure that hydrogen refuelling infrastructure in the member states is constructed in a coordinated way, avoiding spatial gaps and technological incompatibilities?
 - How to simplify permission procedures?
 - How to incentivise first movers?

The HyTruck Project

Workpackages

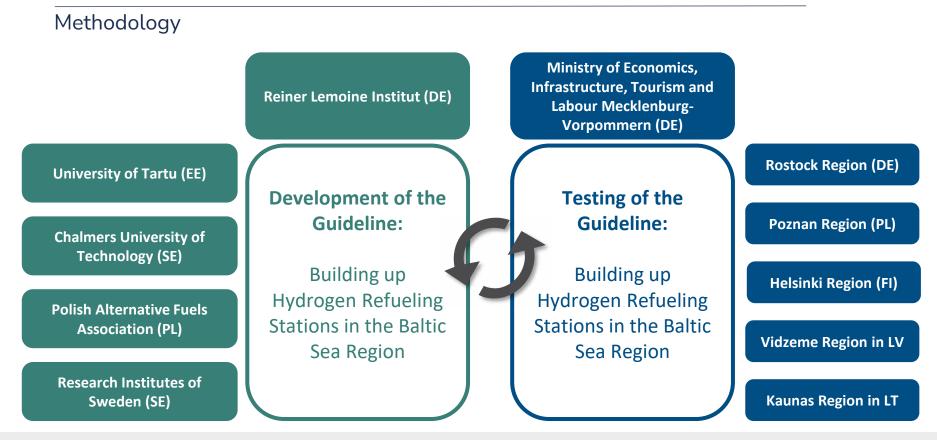
WP2: Piloting and WP3: Transferring **WP1:** Preparing Solutions **Solutions** evaluating Solutions Joint preparation of the Spatial Planning Toolkit parallel pilots for HRS development One-stop shop for HRS planning in the BSR Development of a spatial Economic & Environmental planning concept for each Considerations for ramp-up pilot region Funding and and policy HRS programmes Spatial development **Technical Standards** concept for HRS Transnational exchange on HRS Guideline for planning HRS Memorandum of

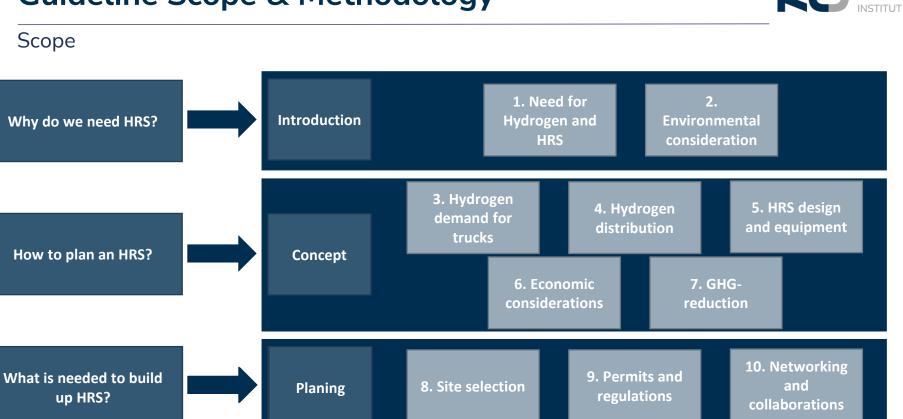
understanding for HRS

Goals and Objectives of the Guideline

The guideline is set to assist **public authorities** in:

- Building the most suitable infrastructure
- Fitting the regional needs and legal requirements
- Taking an active role in building up regional hydrogen infrastructure
- **Cooperation** with other regions to avoid gaps




Goals and Objectives of the Guideline

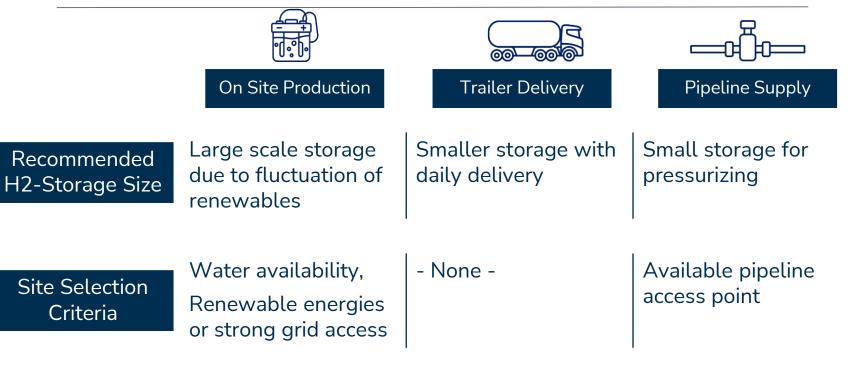
The guideline should therefore:

- ► Retrace the **major findings** of the HyTruck-project
- Provide knowledge and give usable insight in development in hydrogen technology
- Focus on the target group

REINER

LEMOINE

R


Example results: How to supply a HRS with Hydrogen?

Within the guideline we compare three different supply options of hydrogen refueling stations:

Results

	On Site Production	Trailer Delivery	Pipeline Supply
GHG Emissions	Low carbon footprint due to transport and local used renewables	Carbon intense transport	Depending on hydrogen origin high emissions possible
Economic Considerations	No transport cost, Low hydrogen cost with good renewable conditions, High investement	Higher cost due to expensive trailer delivery	Unknown cost for pipeline access, Low hydrogen price expected due to large scale production
05.02.2025	riigh investement	Reiner Lemoine Institut	12

Results

Summary

On Site Production

- Very good hydrogen costs possible
- Higher effort for permits
- Balance H2 production and demand

HRS as side project to bigger hydrogen production (e.g. for industrial use)

Trailer Delivery

- Supply dependencies
- Higher GHGemissions and transport cost
- Flexibility in site selection

Most common way to supply HRS at the moment.

Pipeline Supply

- Low availability of pipelines

Promissing future option for hydrogen supply if available

Availability

Where to find the guideline?

- The Guideline is <u>now</u> available on the HyTruck Website.
- Other interesting outputs by HyTruck Partners are/will be available as well. So check it out!

The HyTruck Website: https://interreg-baltic.eu/project/hytruck/

Thank you for your attention!

Your ideas?

... Partnerships ... Research Cooperations ... Joint Project Proposals

Tel:	+49 (0)30 1208 434 86	
E-Mail:	marcus.schober@rl-institut.de	
Web:	http://www.rl-institut.de	

