

LCA AS A PRACTICAL TOOL FOR ENVIRONMENTAL IMPACT ASSESSMENT

Dr. Viktoria Voronova E-mail: viktoria.voronova@taltech.ee

WHAT IS LIFE CYCLE ASSESSMENT (LCA)?

- Life Cycle Assessment (LCA) is a practical tool used to evaluate the environmental impacts of a product, process, or service throughout its entire life cycle.
- It systematically assesses the environmental effects from the extraction of raw materials (cradle) to the disposal or recycling (grave), covering all stages in between, such as production, transportation, use, and end-of-life treatment.

Fig. 1. Stages of life cycle assessment (Source: Ecoinvent, 2024)

1. Priorities for the environment

Cradle to gate approach

Cradle to grave approach

What is the environmental impact?

How it can be measured?

Environmental impact refers to the direct effect of socio-economic activities and natural events on the components of the environment and human health.

In the frame of **Life cycle assessment** environmental impact can be measured through environmental indicators.

Fig.2 Environmental indicators (*Photo:Enviroscore, 2024*)

LCA STANDARDS

ISO 14040 and ISO 14044 on life cycle assessment

<u>ISO 14040</u>:

- Establishes the principles and framework for LCA, covering the goal, scope, inventory analysis, impact assessment, and interpretation.
- It ensures consistency in methodology, providing a clear and structured approach for organizations to assess the environmental aspects of products or services throughout their life cycles.

<u>ISO 14044:</u>

- Expands on ISO 14040 by detailing the specific requirements and guidelines for conducting LCAs, including how to quantify and interpret results.
- It outlines the steps necessary for conducting a life cycle inventory (LCI) and life cycle impact assessment (LCIA), ensuring that assessments are transparent, comprehensive, and comparable.

TALLINN UNIVERSITY OF TECHNOLOGY

LCA STANDARDS

ISO 14067 on the carbon footprint of products

- ISO 14067 is an international standard that focuses on the quantification and communication of the carbon footprint of products (CFP).
- It provides guidelines for calculating the total greenhouse gas (GHG) emissions associated with the life cycle of a product, from raw material extraction through production, distribution, use, and disposal.
- ISO 14067 defines the methodology for quantifying GHG emissions and removals, using reliable and consistent data sources. It applies life cycle assessment (LCA) principles aligned with ISO 14040 and ISO 14044 but focuses specifically on carbon-related emissions.
- The standard requires transparency in the reporting process and ensures that CFP assessments can be compared between products.
- It also provides guidelines on how the CFP should be communicated to stakeholders, ensuring clarity, accuracy, and relevance, whether the footprint is shared through labels or environmental reports.

LIFE CYCLE IMPACT ASSESSMENT (LCIA)-EXAMPLE CALCULATION OF GLOBAL WARMING POTENTIAL (GWP)

In the LCIA phase, the potential climate change impact (global warming potential) is calculated by multiplying the mass of GHG released or removed by the 100 – year potential given by IPCC in units of "kg of CO₂ equivalents per kg emission".

Global warming

- Many of the substances emitted to the atmosphere as a result of human activities contribute to this manmade greenhouse effect and must be classified in this impact category. Listed in order of importance:
- \checkmark CO₂ (carbon dioxide)- 60%
- \checkmark CH₄ (methane) 15%
- ✓ N_2O (nitrous oxide) 4%
- ✓ Halocarbons (hydrocarbons containing chlorine, fluorine or bromine) 10%

LIFE CYCLE IMPACT ASSESSMENT (LCIA)-EFECT OF THE GREENHOUSE GASES

Figure 3: Greenhouse gas effect (Source: Earth Journalism Network, 2024)

Table 1 Global warming potential (GWP) values relative to CO2

 (Source: IPPC, 2024)

		GWP values for 100-year time horizon		
Industrial designation or common name	Chemical formula	Second Assessment Report (SAR)	Fourth Assessment Report (AR4)	Fifth Assessment Report (AR5)
Carbon dioxide	CO ₂	1	1	1
Methane	CH ₄	21	25	28
Nitrous oxide	N ₂ O	310	298	265

EXAMPLE – CALCULATION OF CARBON FOOTPRINT FOR GREEN EVENTS IN ESTONIA

The main objective was to calculate the carbon footprint of reusable plastic dishware used at the Green Events in Estonia:

- production of the materials
- end-of-life points
- comparison with SUP dishware options

Events are:

- "Youth Song and Dance Celebration" in Estonia in 2023
- LHV Maijooks in Estonia 2022
- LHV Maijooks in Estonia 2023
- Merepäevad in Estonia 2023
- Tallinna maraton in Estonia 2022

Tallinna maraton in Estonia 2023

EIA METHODOLOGY - CARBON FOOTPRINT CALCULATION

EIA METHODOLOGY – EMISSION FACTORS

Name in the table	Material, description	Emissions, kg CO ₂ eq/ kg of material	Emission factor source
Bio-PP	Bio Polypropylene	-0,06	Greenhouse Gas Emission Reduction Potential of European Union's Circularity
PP	Polypropylene granulate (PP), production mix, at plant	2,12	
Wood fiber	Graphic Paper, production mix, at plant, technology mix, 79% primary fibre, 21% recycled fibre	0,83	OpenLCA ELCD database, Impact
PS	Polystyrene (general purpose) granulate (GPPS), production mix, at plant	3,80	assessment method - CML-IA baseline, Global warming (GWP100a)
PET	Polyethylene terephthalate (PET) granulate, production mix, at plant, amorphous	3,56	
-	1 kg waste (incinerated)	3,23	
PP	1 kg recycled polypropylene (PP)	0,22	US EPA, AR5 method

Reusable dishware				
	Cups	Plates/Food package*	Cutlery	
1. Youth Song and Dance Celebration				
Pieces, #	85 000	155 000	161 500	
Weight, g	43	125	7	
Material	PP	PP	Wood fibre 60%, Bio-PP 40%	
		2. LHV Maijooks 2022		
Pieces, #	14 610			
Weight, g	15			
Material	PP			
		3. LHV Maijooks 2023		
Pieces, #	17 260	1 289	3 250	
Weight, g	14	116	5	
Material	PP	PP	PP	
		4. Merepäevad 2023		
Pieces, #	10 242	7 469	28 450	
Weight, g	52	76	6	
Material	PP	PP	PP	
5. Tallinna maraton 2022				
Pieces, #	9 110	3 900		
Weight, g	24	52		
Material	PP	PP		
		6. Tallinna Maraton 2023		
Pieces, #	72 919	1 389	6 000	
Weight, g	12	72	6	
Material	PP	PP	PP	

ALTERNATIVE SCENARIO

For comparison purposes, the alternative scenario with SUP was calculated.

Single use dishware				
	Cups	Plates	Food packaging	Cutlery
Weight, g	7	20	125	1,5
Material	PP	PP	PP	PS
Quantities of the SUP dishware are the same as for the corresponding				
green event.				

Reiteration (100-120 events) was used.

BALTIPLAST

INITIAL DATA

Dance Celebration - Hobart™ industrial tunnel washer data:			
Total loading	26,9	kWh	
Blow drying	5,4	kWh	
Other events - MEIKO™ K 200KVP conveyer dishwasher:			
Total loading	31,33	kWh	
All events - Capacity			
Emission factor for 1 kW	0,715	kg CO ₂ -eq*	
Cups/Food package	4000	pc/h	
Cutlery	8000	pc/h	

*Elering 2022 report

https://www.hobart-export.com

CARBON FOOTPRINT CALCULATION

CALCULATION FLOW

CARBON FOOTPRINT CALCULATION

CALCULATION FLOW

Single-use dishware

RESULTS

TAL TECH The results show, that in the case of **reusable dishware** usage total emissions in t CO_2 eq are **4,94 – 7,43 times** less than in the case of **single-use plastics**.

BENEFITS FOR THE COMPANY

Ø

LCA helps organizations pinpoint the stages in their product's life cycle or operations that have the highest environmental impacts, reducing resource consumption, energy use, and emissions, ultimately lowering the company's ecological footprint.

By identifying inefficiencies in resource use and energy consumption, LCA can help organizations optimize processes, reduce waste, and lower operational costs.

LCA provides a comprehensive framework to assess and report environmental performance, ensuring that organizations stay compliant with current regulations (e.g., carbon emissions, waste management) and are better prepared for future regulatory changes.

LCA provides a scientifically robust and transparent way to communicate environmental impacts, making sustainability reports more credible and comprehensive.

LCA can help organizations move toward circular economy principles by assessing opportunities for recycling, reuse, and resource recovery. This supports waste reduction and encourages the design of products that have a longer life span or are easier to disassemble and recycle at the end of their life.

LEARNING OPPORTUNITIES

The educational platform for life cycle assessment structures EPICENTRE

EPICENTRE

EPICENTRE addresses a critical need in the professional community by focusing on enhancing understanding and communication regarding Life Cycle Assessment (LCA) & Life Cycle Cost (LCC) analysis, and new Business Development

Two level courses of summer school

EPICENTRE

Learning platform & materials

EDICENTRE

Roadmap of summer school

EPICENTRE

EPICENTRE LCA/LCC summer school for professionals

18th – 23rd September 2025 @Riga

More information about the project: https://epicentre.rtu.lv/

General plan:

- > 18th September Introduction, basic LCA course
- > 19th September Basic LCA course
- > 20th September Sustainability assessment course & Business course
- > 21st September Excursion & socialization

- 22nd September Sustainability assessment course & Business course
- > 23rd September Sustainability assessment course & Business course

THANK YOU!

E-mail: viktoria.voronova@taltech.ee