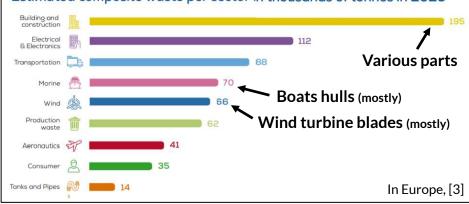
Managing End-of-Service Composite Structures Challenges And Case Studies With Focus On Repurposing

Alann André – alann.andre@ri.se

Göteborg/Riga – GlassCircle Final conference, 2024-09-26

Alann André


- PhD in Timber Structures (Strengthening of timber beams with Fibre Reinforced Polymers) (Chalmers, Sweden), Mechanical Engineer background (France)
- Senior Researcher at RISE (Research Institute of Sweden):
 - Re-purpose of decommissioned FRP structures
 - Application of composite in the infrastructure sector
 - Modelling of composite structures
- Since 2018: Together with my colleague Cecilia Mattsson, initiating and leading several R&D projects related to the sustainable management of decommissioned composite structures (RECINA, RECOMP, IEA Wind task 45, REKOVIND2, COSOVI, CIRCUBLADE, SVPI LAB)

RI. SE

Glass fibre Reinforced Polymers (GFRP) → Type of structures, Volume and End-of-Service (EoS)

Sources

[1] JEC Group, 2022. JEC Observer Overview of the global composites market, 2021-2026

[2] Tiseo, I., 2022. Production of glass fiber reinforced plastics (GRP) in Europe 2000-2021. Glass Fiber Reinforced Plastic Production in Europe 2021. Statista.

[3] ETIPWind (2019), HOW WIND IS GOING CIRCULAR blade recycling https://etipwind.eu/files/reports/ETIPWind-How-wind-is-going-circular-blade-recycling.pdf

Why managing EoS GFRP is challenging?

- 1. Most GFRP are made with **thermosets** resin (~75%)
- If only GF and thermoset resin are used in the part:
 → Very difficult to separate them due to the chemical structure (cross linking)
- In most cases, other materials are also used:
 → Increased complexity: Need to separate these other materials before separating the fibres from the matrix
- 4. If separation of GF and thermoset is done:
 → The recovered material (fibre and resin) are not (yet) able to compete with virgin material

Complex structures with integrated functions and materials. Ex: Wind turbine blades

Photo: Cecilia Mattsson, RISE

- Blades: composite materials (GFRP and CFRP), 80% in weight + several other materials
- U Very strong, stiff and durable structure, but difficult to separate when reaching decommission
- □ Approx. 30% organic material

Circular management of EoS GFRP: \rightarrow 3 main pillars missing today

\rightarrow + tough economically

- Competition with price of new glass fibres (1-2 €/kg)
- Cheapest EoL route: incineration or landfill (130-140 €/ton)

Repurposing EoS GFRP: What advantages?

\rightarrow Great potential within construction and infrastructure

- Resource efficient solution transform waste material into resource
- Uses material that goes to landfill/energy recovery
- Strong and durable material
- Low maintenance costs
- Replace high CO2 emission materials such as concrete and steel

Content

- 1. Managing EoS Wind Turbine Blades → looking at the Swedish case
- 2. How simple and innovative concepts can help repurposing EoS GFRP → Concept of a pedestrian bridge deck system
- 3. Conclusion and Future Work

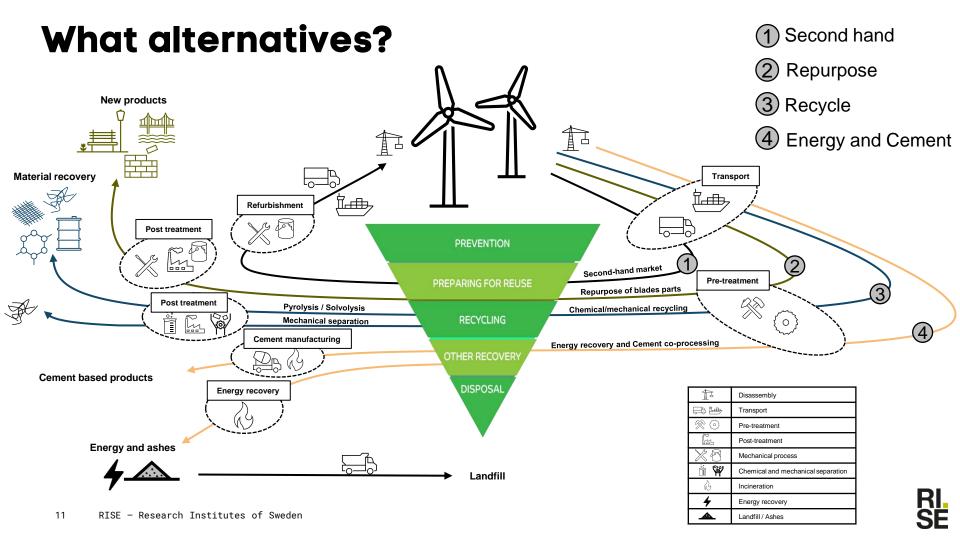
Content

- 1. Managing EoS Wind Turbine Blades → looking at the Swedish case
- 2. How simple and innovative concepts can help repurposing EoS GFRP → Concept of a pedestrian bridge deck system
- 3. Conclusion and Future Work

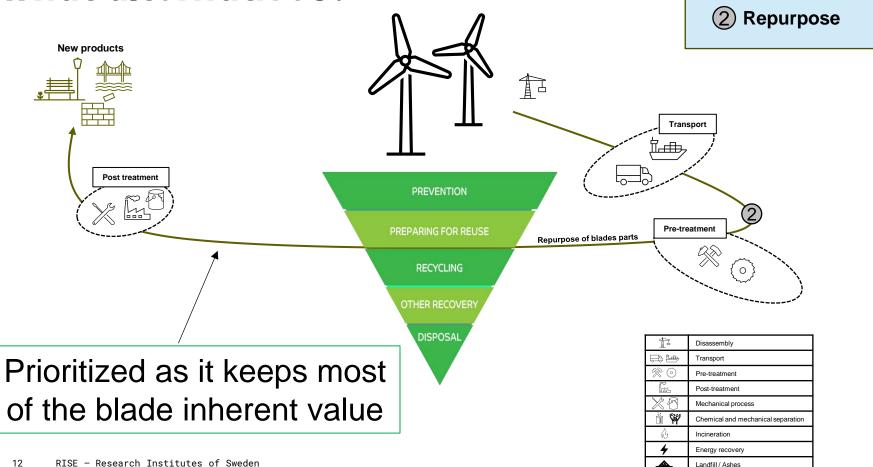
Ageing wind park in Sweden \rightarrow Many turbines to be decommissioned in the coming years!

225 000 29 years Thomas Bru, RISE 200 000 service life 20 years [1] 175 000 service life 150 000 125 000 **Fonnes** 100 000 75 000 50 000 25 000 0 2014 2016 2024 2026 2028 2030 2032 2036 2038 2040 2042 2044 2046 2048 2050 2018 2020 2022 2034 2052 Decommision year

Cumulative wind blade material waste in Sweden

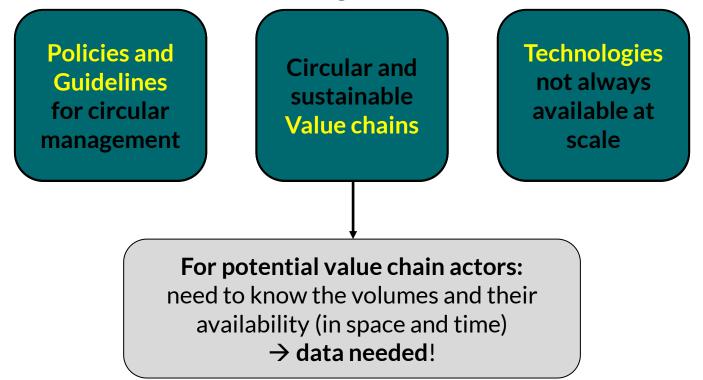

Assuming a 20 year service life, blade weight estimation from Liu & Barlow (2017)
 Assuming a 20 year service life, blade weight estimation from Delaney et al. (2021)
 Assuming a 29 year service life, blade weight estimation from Liu & Barlow (2017)
 Assuming a 29 year service life, blade weight estimation from Delaney et al. (2021)

The number of wind turbine blades to be decommissioned is expected to **increase significantly** in the coming years.


There is today **no industrial and established value chain** to secure a sustainable management of these decommissioned blades.

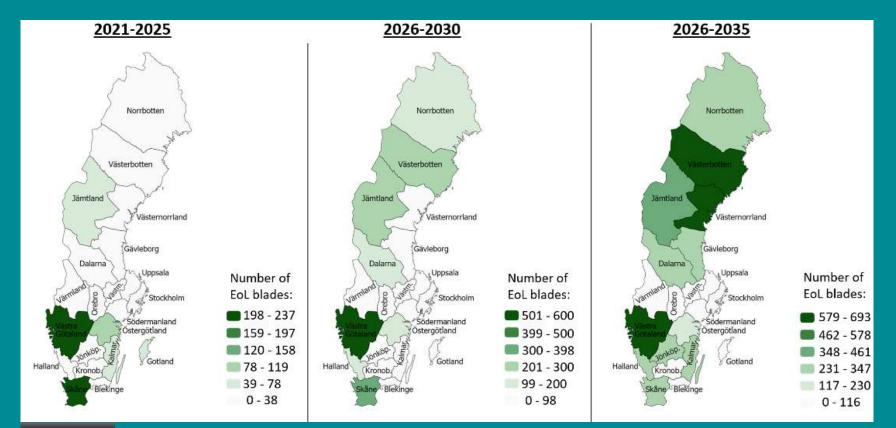
[1] "Method for estimating the future annual mass of decommissioned wind turbine blade material in Denmark", Abrahamsen et al (2023) DOI:<u>10.22541/au.168105743.37926484/v1</u>

What alternatives?



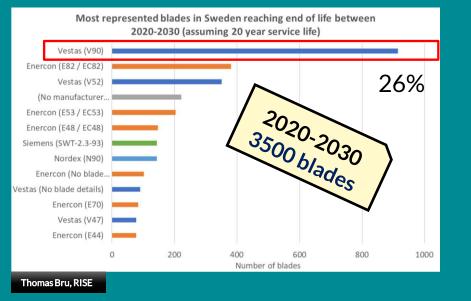
SF

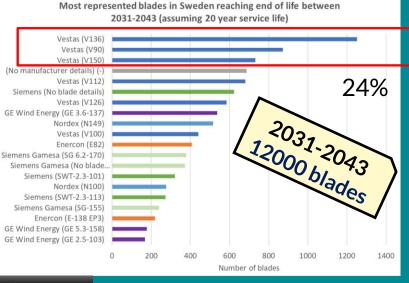
SWEDEN – What are the numbers?


EOS wind turbine blade material per year in Sweden 14,000 12,000 8,957 634 8,365 10,000 ton 6,000 ,359 4,000 2,19 2,000 56 Within 5 year 970 blades 6800 tons

Circular management of EoS GFRP: \rightarrow 3 main pillars missing today

RI. Se

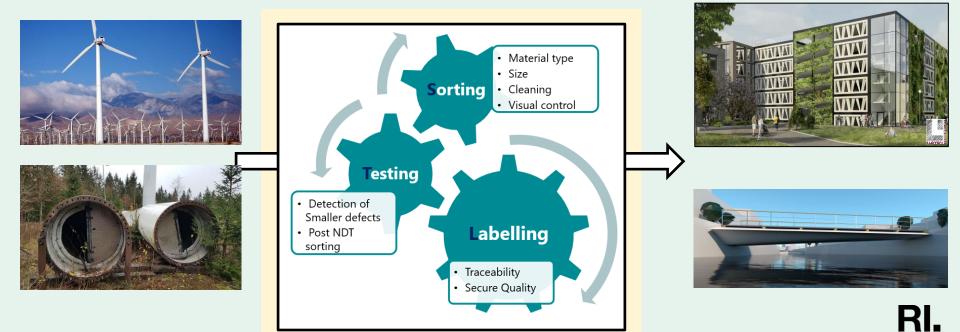

SWEDEN – What are the numbers? + When and Where!!



Thomas Bru, RISE

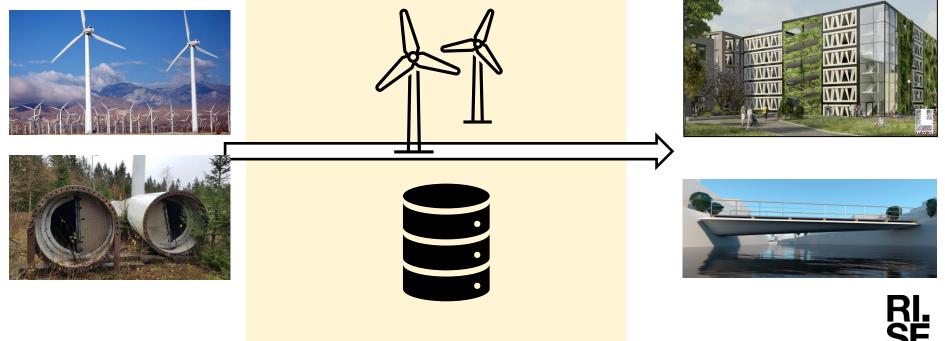
SWEDEN – What are the numbers? + What type!!

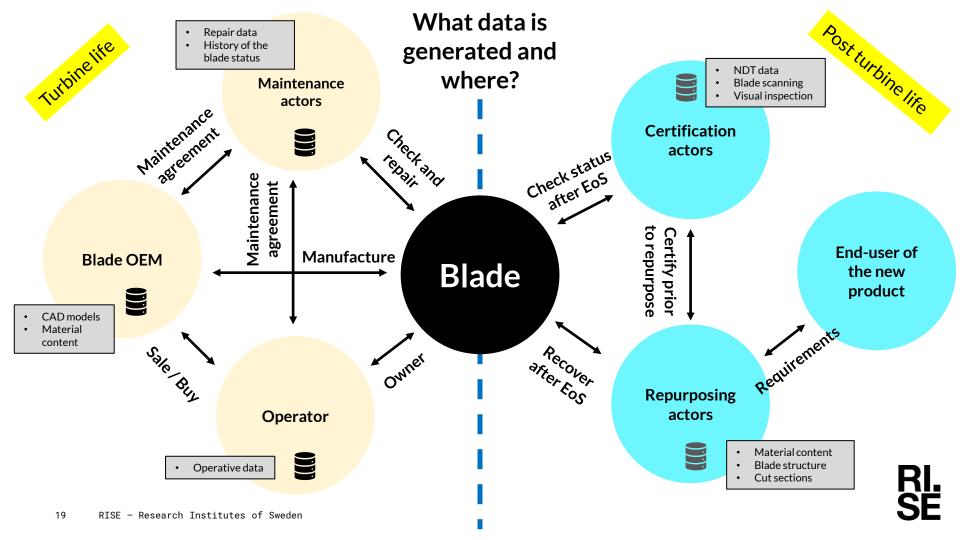
Estimated number of decommissioned blades by type and year



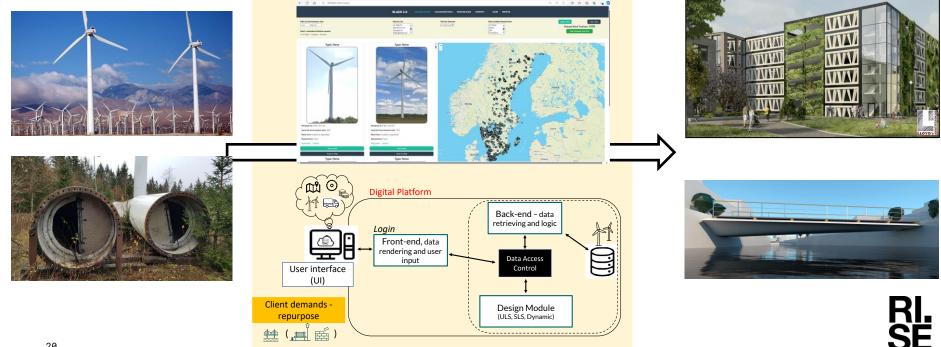
Data collection

Thomas Bru, RISE


How to repurpose the blades at scale?


Need robust certification processes Circularity enabler

How to repurpose the blades at scale?

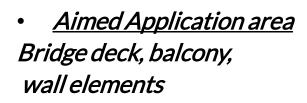

Need access to blade data Circularity enabler

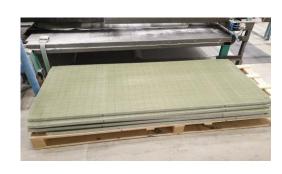
How to repurpose the blades at scale?

Need to use new digital tools Circularity enabler

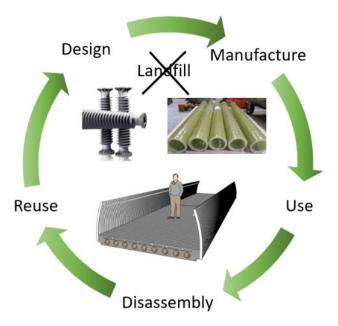
Content

- 1. Managing EoS Wind Turbine Blades → looking at the Swedish case
- 2. How simple and innovative concepts can help repurposing EoS GFRP → Concept of a pedestrian bridge deck system
- 3. Conclusion and Future Work

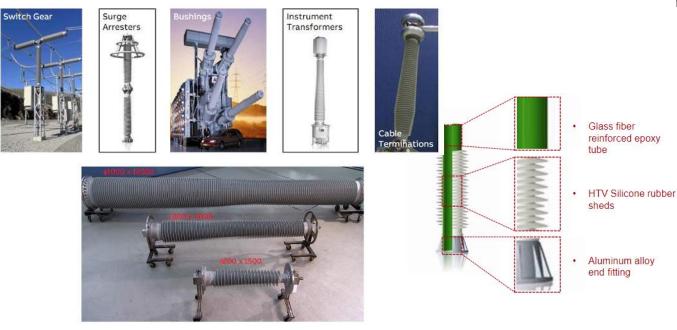



Case study – pedestrian bridge deck

• <u>Objective</u>


Repurpose of EoS GFRP structures in new products

• <u>Current End-of-Service</u> Landfill or incineration



Case study

• Material Repurposed – GFRP pipes aiming for landfill

RI. SE

Material Source \rightarrow

Case study

• *Material Repurposed* -GFRP sandwich panels aiming for incineration

RI. SF

Material Source \rightarrow

Conceptual design – What solutions for a robust design?

Objective: Develop a resilient deck design (KISS principal).

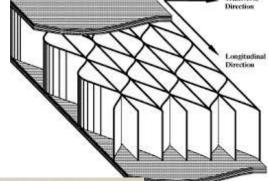
Key Requirements:

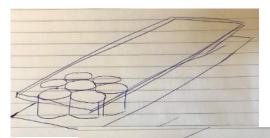
- Accommodate various GFRP pipe lengths and diameters.
- Adapt to pipe availability.

Challenges:

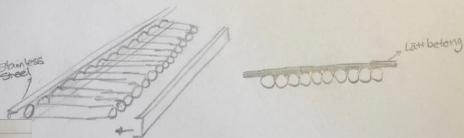
Unpredictability of production waste exact nature and volume

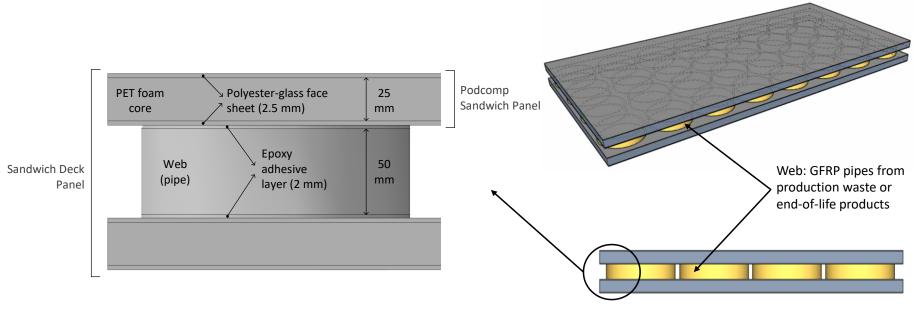
Solution:

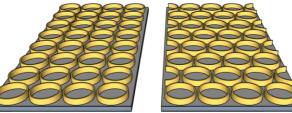

 \rightarrow Create a flexible concept to effectively utilize GFRP pipes of varying dimensions.

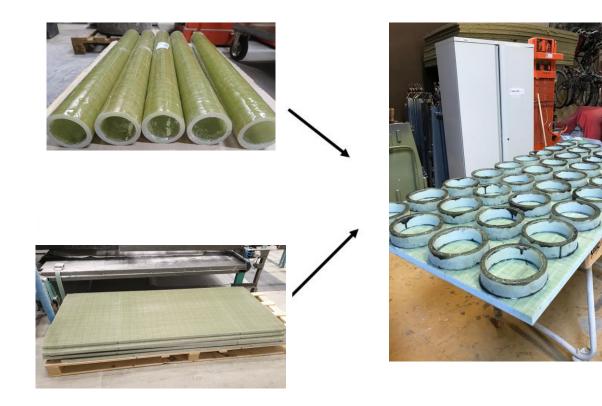


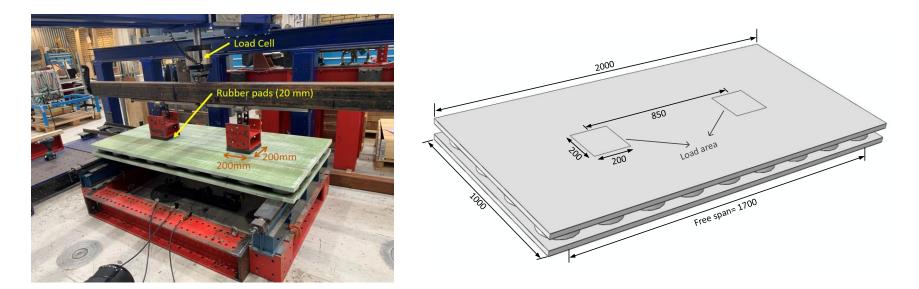
Conceptual design – What solutions for a robust design?



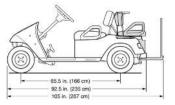





Conceptual design: sandwich panel

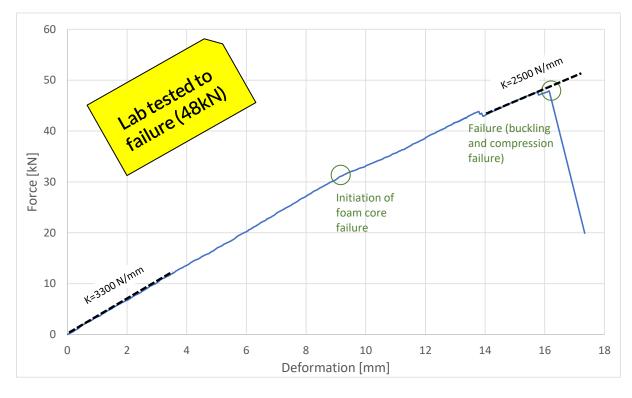

Manufacturing of a bridge deck panel

- Two step assembly
- Adhesive bounding
- Press


Experimental tests

Very light: 35kg/m2

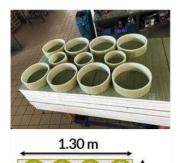
29


Design load: 15kN (Golf cart)

RI. SE

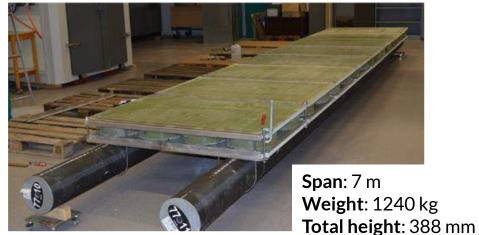
NOTE: Shaded Area Indicates SHUTTLE 2+2

Experimental tests

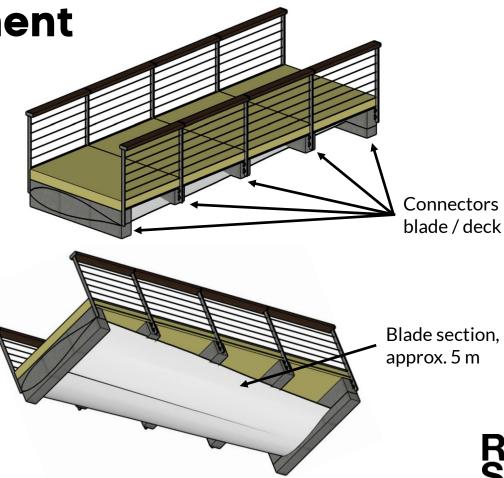


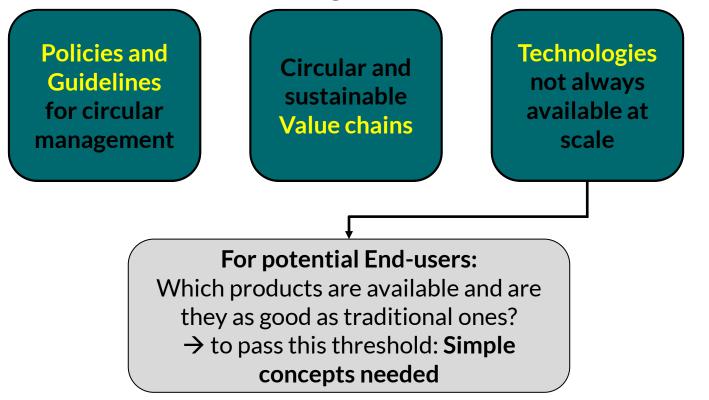
Shear failure running through the top and bottom skin of the sandwich panel.

Manufacturing bridge prototype

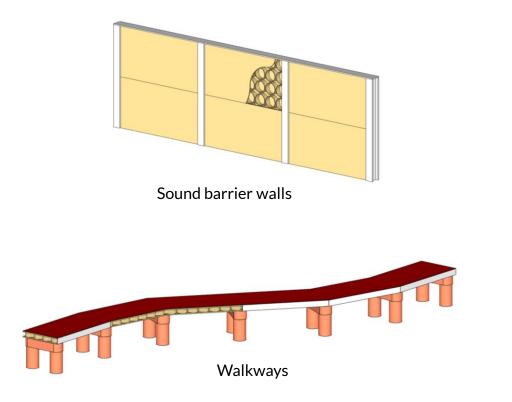

- 8 deck panels with pipes of different diameter
 → robust design
- Girder made of discarded GFRP poles
- Circular design for easy disassembly

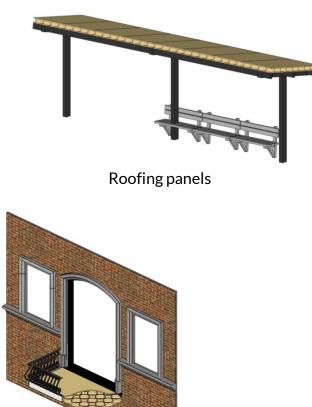
88 m




210/226. ±36

Further development


- Section of a decommissioned wind turbine blade used as girder
- Custom made support between the blade section and the deck panels
- Mechanical test of prototype planned for the coming weeks



Circular management of EoS GFRP: \rightarrow 3 main pillars missing today

Other potential applications

Balconies

Content

- 1. Managing EoS Wind Turbine Blades → looking at the Swedish case
- 2. How simple and innovative concepts can help repurposing EoS GFRP → Concept of a pedestrian bridge deck system
- 3. Conclusion and Future Work

Conclusion and Future work

- 1. We have **large volumes** of EoS GFRP structures to manage (e.g. wind turbine blades, boats, ... B&C 😱 !)
- **2. High competition** with virgin GF and cheap EoS routes (e.g. incineration)
- 3. Policies and value chains missing for sustainable management at scale
- 4. Repurposing EoS GFRP structure: keep their inherent value (high up on the waste hierarchy)

Conclusion and Future work

- 5. Repurposing blades needs **robust certification processes** and access to **blade data** work is ongoing, but more is needed!
- 6. Establishment of a **digital platform for data access** will ease repurposing
- 7. We need simple concepts to trigger end-users to choose product made of repurposed GFRP
- 8. New policies are needed to accelerate the creation of economically sound value chains

Recent publications for further reading

En-modert transfacer

by fondenings institutor

PISE of upperies as

Energieisndicheten

MDPI

Journal of Environmental Management Volume 367, September 2024, 122015

Research article

Sustainable repurpose of end-of-life fiber reinforced polymer composites: A new circular pedestrian bridge concept

Alann André ° 📍 🖾 , Magdalena Juntikka °, Cecília Mattsson °, Torun Hammar *, Reza Haghani °

- ^a RISE Research Institutes of Sweden, Argongatan 30, 431 22, Mölndal, Sweden
- ^b RISE Research Institutes of Sweden, Stockholm, SE-114 86, Sweden
- HIFIT USA LLC, Fairfax, VA, USA

https://www.sciencedirect.com/science/artic le/pii/S0301479724020012

-	► sustainability	
ticle		

A Holistic and Circular Approach for Managing End-of-Service Wind Turbine Blades

Alann André ^{1,40}, Thomas Bru ¹0, Abdul Ghafoor Abbasi ¹0, Sugandh Sinha ¹, Stephanie Nunes ¹0, Magdalena Juntika ¹0, Karolina Kazmierczak ², Nils Ólafur Egilsson ², Gustav Frid ³, Marcín Sobezyk ⁴ and Reza Haghani ⁵0

- ¹ REF. Research Institutes of Seveden, 411 53 Molindal, Seveden; thomas.bruiltrise (T.B.); abdul_abdorofftas (A. G.A.); sugandh.sinhuffitse (S.S.); stephante nurses/fitse (S.N.); magdalena.junitikaditise (M.J.) ² Chalmer Industribetini, 42 58 Cobelong, Seveden; karolina kazmierczak@chalmersindustritelsnik.se (K.K.);
 - ² Chaimers Industriteknik, 412 38 Goteborg, Sweden; karolina, kazmierczak@chaimersindustriteknik.se (K.K.) nils.o.egilsson@chalmersindustriteknik.se (N.Ö.E.)
 ³ Vattenfall Business Area Wind, 169 92 Stockholm, Sweden: gustav, frid@vattenfall.com
- ³ Vattenfall Business Area Wind, 169 92 Stockholm, Sweden; gustav.frid@vattenfall.com ⁴ ANMET. Street Przemvslowa 12, 67-300 Wiechlice, Poland: marcin.anmet@gmail.com
- ⁴ ANMET, Street Przemysłowa 12, 67-300 Wiechlice, Poland; marcin.anmet@gmail.com
 ⁵ HiFIT High Frequency Impact Treatment USA, Fairfax, VA 22032, USA; reza.haghani@hifit.se
- HIFTI High Prequency impact treatment USA, Fairlas
 Correspondence: alann.andre@ri.se

https://www.mdpi.com/2071-1050/16/17/7858

https://ri.divaportal.org/smash/record.jsf?pid=diva2%3 A1855222&dswid=1660

Cirkulärt omhändertagande av solcellspaneler och vindturbinblad för

vindkraftverk

Thank you!

Alann André – alann.andre@ri.se Göteborg/Riga – GlassCircle Final conference, 2024-09-26

×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Ål:	anı	า [×] А	nd	ré	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	Ŷ									۸٦	000	~ ~		~																	×
						<u>^</u>	×	×	×	×	×	×	×	×	×+	46	76	ndro 784	e@r 43	1.s } [×] 46	e 5 [×]	×	×	×	×	×	×	×	×	×	×	×	×	×	×	
<u> </u>	×	×	×	×	×	×	×	×	×	×	×	×	×	×	× +	46 ×	76 ×	nare 784 ×	e@r 43 ×	1.s } *46 ×	e 5 [×] ×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
×	×	×	×	×	×	×	××××	× × ×	× × ×	× × ×	××××	× × ×	× × ×	× × ×	× × ×	46 ×	76 ×	nar(784 ×	e@r 43 × ×	1.s }*4(×	e 5 × ×	× × ×	××××	× × ×	× × ×	× × ×	×	×								
×××	× × ×	× × ×	× × ×	× × ×	× × ×	××××	× × × ×	× × × ×	× × ×	× × × ×	× × ×	× × × ×	× × ×	× × ×	× × × ×	46 × × ×	76 × ×	nar(784 × ×	e@r 43 × × ×	1.s 3 *4(× ×	e 5 × × ×	× × ×	× × ×	× × ×	× × ×	× × × ×	× × ×	× × × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × ×	×	× × ×
	× × × ×	× × ×	× × ×	× × ×	× × ×	× × ×	× × × ×	× +. × × ×	46 × × ×	76 × × ×	nar (784 × × ×	e@r 43 × × ×	1.s 3*46 × ×	e 5 [×] × × ×	× × × ×	×	× × ×																			

RISE - Research Institutes of Sweden AB · info@ri.se · ri.se