

BOWE2H – Kick-off

Green hydrogen and offshore wind: Connecting the dots in the North Sea

cruh21 is enabling energy innovation in Offshore Hydrogen

- Strategic project consulting in the energy industry, emerged at the end of 2020 from the AquaVentus initiative as the former AquaVentus coordination office.
- Interdisciplinary team of consultants from various fields, such as engineering, law, communication, social sciences, etc.
- Excellent starting position at the interface between industry and research, e.g. in the context of the hydrogen lead projects

Strategy Technology Energy industry Regulatory Communication Network & Stakeholders

Our areas of business

Offshore & Hydrogen

Services

- Strategy, innovation and technology consulting
- Concept development & feasibility studies
- Tender support
- Regulatory

Hydrogen & sector coupling

Services

- Strategy, innovation and technology consulting
- Concept development & feasibility studies
- due diligence
- Development, analysis and optimization of business cases
- Funding consulting

© Wasserstoff und Windkraftanlagen c_malp-stock.adobe.com

Network & Communication

Services

- Stakeholder management
- Partnering, Matchmaking
- Concept development
- Communication, PR & PA
- Network management

© H2-Offshore-Plattform c_malp-stock.adobe.com

Offshore Hydrogen in the EU

Fit for 55

 13 guidelines to achieve climate targets: package can push Green Hydrogen and PtX forward

REPowerEU

- Production and import of 20 million tonnes renewable H2 in the EU by 2030
- Important Projects of Common European Interest (IPCEIs) on hydrogen

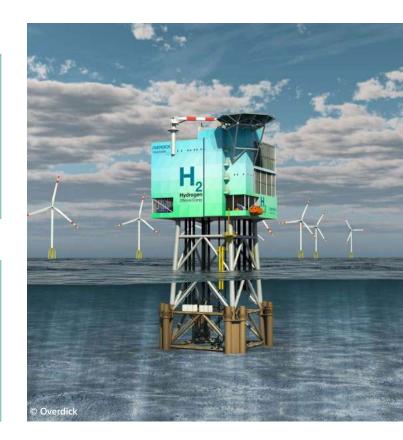
Esbjerg Declaration signed by Belgium, Denmark, Germany and the Netherlands

- North Sea as a Green Power Plant of Europe: multiple connected offshore projects and hubs
- Offshore wind production at massive scale (65 GW by 2030 and 150 GW by 2050)
- Electricity and green hydrogen interconnectors
- 20 GW of Offshore and Onshore Hydrogen by 2030

Promising start but lack of specific targets and regulations for offshore H2

Hydrogen production in the North Sea

Q	Project name	Description	Country	Status			
1	SEN-1	offshore hydrogen production on a central platform (290 MW – 1 GW)	DE	Tender 2023			
2	AquaDuctus	GW-scale open access hydrogen pipeline	DE	Feasability		(14)	(12)
3	Aquaprimus	2x14 MW prototype of a production-ready distributed generation unit	DE	Feasability			
4	Aquasector+	10 GW offshore hydrogen by 2035	DE	Feasbility			6
5	NortH ₂	10 GW wind - 1 million T/a H_2 by 2040	NL	Feasabilty		(13)	Nordsee
6	Danish energy island	First artificial energy island, 3 -10 GW wind	DK	Tender 2023	:=	\sim	
7	AmpHytrite	Centralised offshore H_2 from wind production	NL	Feasability			
8	H ₂ opZee	300-500 MW El. & 10-12 GW existing Pipeline	NL	Feasability		9	$\sqrt{5}$ $(3)^{\prime}$
9	Oyster	H ₂ Production Onshore & Offshore	UK	Design			
10	PosHYdon	1 MW El 146,000 T/a H ₂	NL	Construction			
11	Dolphyn	10 MW FOWT with el. & storage, 4 GW 2030	UK	Trials in 2023			(10)
12	Deep Purple	Offshore electrolysis & subsea storage	NOR	Concept			
13	Haladane	Offshore Wind & H_2 , use of existing pipelines	UK	Design			
14	Salamander	200 MW FOWT & optional H_2 Production	UK	Planning			1
15	Hydrogen Turbine 1	Integrated electrolyser into an offshore wind turbine	UK	Licensing		*project location still unknown	


Offshore Hydrogen in Germany _

Status Quo

- Existing national and regional Hydrogen strategy
- Targets for Offshore Wind: 30 GW by 2030, 40 by 2035, 70 GW by 2045
- No specific details on the share of Offshore Hydrogen
- Permitting process and area availability are currently hindering these goals (fisheries, environmental protection, military use...)

Developments

- Specific agreement on Offshore Hydrogen by the new government
- Amendment of the National Hydrogen Strategy: 10 GW electrolysis target by 2030
- SEN-1 tender in 2023: Area for production of green hydrogen with up to 1 GW wind capacity (in total)

Offshore Hydrogen in the Netherlands.

Status Quo

- Existing Dutch Hydrogen Strategy
- Several oil and gas platforms, existing pipeline infrastructure
- Targets for Offshore Wind: 22 GW by 2030, 50 GW by 2040, 70 GW by 2050
- 3 to 4 GW Hydrogen by 2030, mostly onshore

Developments

- Roadmap for offshore H₂ production (NSE Program)
- Four energy hubs identified to combine power and hydrogen production
- Investment in onshore H₂ infrastructure approved
- H₂ offshore infrastructure in concept phase: discussions on modification of H₂ content in gas transport pipelines

© North Sea Energy

|7

Sector coupling offshore - North Sea Wind Power Hub

Vision of a European power system in the North Sea based on "power islands"

 Transnational, hybrid and cross-sectoral approach to harness the potential of the North Sea and exploit synergies
Gasume energiner

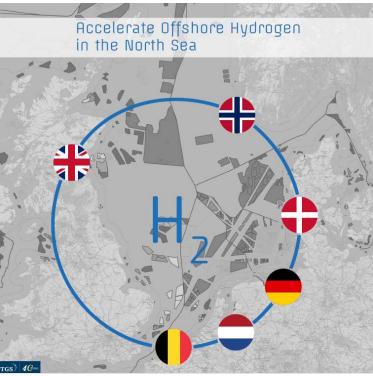
Hub-and-spoke concept

large amounts of offshore wind connected to one another, across countries while integrating different energy sectors and energy carriers

Pros (+)

Cons (-)

- Synergies across energy sectors
- ors More upfront investment
- Minimized environmental impact
- Higher security of supply
- Increased regulatory and market complexity



Masterplan Offshore Hydrogen North Sea

The overall goal of the MOHN project is to develop a **strategy** to accelerate the implementation of **offshore electrolysis capacity** in the German and European North Sea.

Objectives and main tasks

- Align together existing national and regional **initiatives** and **stakeholder** activities into a coordinated and accepted master plan
 - Survey, workshops, interviews
 - Identify obstacles and report about best practice among countries
- **Develop framework conditions** and provide results to stakeholders and regulators
 - GIS study to identify areas for offshore electrolysis and analyze cost drivers
 - Modelling of economic impact of prospective and transnational planning (project partner Fraunhofer IEG)
 - Initial assessment of environmental impact by comparing development scenarios (project partner Hereon Institute)

© 4coffshore, Dierk Wilcke

We are looking forward to your Feedback!

Thank You!

Meiko Neumann

Managing director Tel: +49 (40) 3346553-77 neumann@cruh21.com Meryem Maghrebi Consultant Tel: +49 (40) 3346553-69

maghrebi@cruh21.com

cruh2**1** GmbH Erste Brunnenstraße 1 D-20459 Hamburg +49 (40) 3346553-60

www.cruh21.com